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Tóm tắt 

Nghiên cứu này tập trung vào cách khai thác dữ liệu kinh tế thực tế để xác định các yếu tố kinh 

kế ảnh hưởng đến hiệu suất Logistics, được đo lường bằng chỉ số Hiệu suất Logistics (LPI). 

Phương pháp phân tích sử dụng các kỹ thuật học máy (ML) tiên tiến kết hợp với các phương 

pháp lựa chọn đặc trưng cho mô hình dự báo và hồi quy dựa trên các yếu tố kinh tế có liên quan. 

Mục tiêu chính là xác định bộ các yếu tố kinh tế tối ưu nhất để dự đoán hiệu suất logistics của 

một quốc gia. Ngoài ra, các thuât toán hồi quy khác cũng được nhóm tác giả thử nghiệm nhằm 

nâng cao độ chính xác của dự báo. Các kỹ thuật được lựa chọn bao gồm các phương pháp lọc 

dựa trên tương quan và phân tích thành phần chính (PCA), cùng với các phương pháp như hồi 

quy LASSO và Elastic-net. Các phương pháp khác như kiểm định ANOVA F-test, loại bỏ đặc 

trưng đệ quy (RFE) và phương pháp cây quyết định cũng được thử nghiệm nhưng cho ra kết 

quả ít ý nghĩa hơn so với PCA. Dựa trên các đặc trưng được chọn từ PCA, biến phụ thuộc (LPI) 

được dự đoán bằng các phương pháp hồi quy như mô hình Cây Quyết định, XGB Regressor, 

K-Nearest Neighbors, Hồi quy Rừng ngẫu nhiên, MLP (Multi-Layer Perceptron) và Hồi quy 

Máy Vectơ Hỗ trợ (SVM). Hiệu suất mô hình được đánh giá qua các chỉ số MAE, MAPE, 

RMSE, R² và R² điều chỉnh. Kết quả chỉ ra rằng bộ đặc trưng PCA và Elastic-net cung cấp hiệu 

suất đáng tin cậy nhất dựa trên các tiêu chí đo lỗi. Một chiến lược phù hợp nhất được áp dụng 
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để tinh chỉnh lựa chọn kết hợp với các bộ đặc trưng mang lại kết quả tốt nhất. Các phát hiện 

cho thấy rằng các thuật toán học máy hỗ trợ hiệu quả trong việc lựa chọn các yếu tố kinh tế có 

liên quan nhất để đánh giá hiệu suất logistics của một quốc gia. Hơn nữa, nghiên cứu cũng chỉ 

ra rằng Rừng ngẫu nhiên là mô hình dự đoán hiệu quả nhất. 

Keywords: Lựa chọn đặc trưng, hồi quy học máy, chỉ số Hiệu suất Logistics, thuộc tính kinh 

tế. 

AN APPLICATION OF ARTIFICIAL INTELLIGENCE MODELING TO 

FEATURE SELECTION: THE LOGISTIC PERFORMANCE INDEX AND 

ECONOMIC FACTORS 

Abstract 

This study highlights how to leverage real-time dynamic economic big data to identify key 

economic factors influencing logistics performance, as measured by the Logistics Performance 

Index (LPI). The analytical approach utilizes advanced machine learning (ML) techniques and 

feature selection methods for predictive modeling and regression using relevant economic 

attributes. The primary objective is to determine the optimal set of economic indicators that 

best predict a country's logistics performance. Additionally, various ML regression algorithms 

are explored to enhance prediction accuracy. Feature selection techniques include correlation-

based filter methods and principal component analysis (PCA), alongside embedded methods 

such as LASSO and Elastic-net regression. Other methods like the ANOVA F-test, Recursive 

Feature Elimination, and tree-based approaches are also tested but yield less significant results 

compared to PCA. Based on the selected PCA features, the dependent variable (LPI) is 

predicted using Decision Tree Regression, XGB Regressor, K-Nearest Neighbors, Random 

Forest Regressor, Multi-Layer Perceptron, and Support Vector Machine regressions. Model 

performance is assessed using MAE, MAPE, RMSE, R², and adjusted R² metrics. The results 

indicate that PCA and Elastic-net feature sets provide the most reliable performance based on 

error measurement criteria. A feature union and intersection strategy are applied to refine the 

selection, with the union of feature sets yielding the best outcomes. The findings suggest that 

ML algorithms effectively aid in selecting the most relevant economic factors for assessing a 

country’s logistics performance. Moreover, the study identifies Random Forests as the most 

effective prediction model. 

Keywords: Feature selection, machine learning regression, Logistics Performance Index, 

economic attributes. 

1. Introduction  

The LPI is an often-cited instrument that provides critical information for policymakers to 

evaluate a country’s logistics performance (World Bank, 2018). It is now an integral instrument 

in trade facilitation alongside other tools that target the development of the global economy. 

The World Bank data reveals an extensive analysis that assists policymakers in identifying 

opportunities to enhance the global supply chain business including the efficiency of customs, 

trade, and transportation infrastructure (Gerschberger et al., 2017). While it is helpful to 

condense and analyze such information, there are critical benefits to having uninterrupted, real, 
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and current information on a country’s logistics efficiency. This data would enable the 

monitoring of changes to various factors, analysis of certain trends, and supporting logistics 

performance evaluation predictions. This system would help policymakers access advanced 

estimates on performance levels in a timely manner which would help bolster the country’s 

logistics and supply chain potentials. Other studies indicate that new institutional or resource-

based policies are highly likely to enhance logistics performance. As Wong et al. (2018) claim, 

the presence of low corruption and a stable political environment within a country tend to be 

associated with a higher level of logistics performance. Furthermore, changes in resource 

availability such as infrastructure, technology, labor, and education greatly improve logistics 

performance and contribute to increasing a country’s competitiveness. 

World Bank (2018) underscores the point that a weak government or social discontent may 

negatively impact performance. However, the factors analyzed in earlier research are primary 

in nature and some aspects were captured through a survey. After those studies, an important 

correlation has developed between a country's logistics performance and other economic 

indicators, which is captured by the LPI scores. D’Aleo et al (2017) showed the correlation 

between logistics performance and various economic phenomena, including, GDP per capita, 

the volume of exports and imports, and economic growth. These LPI components are found to 

have a substantial positive influence on the expansion of international trade, both for imports 

and exports (Takele 2019). Still, important economic variables that affect logistics performance 

are known to exist but have not been widely researched. This research intends to use economic 

big data with the purpose of determining economic variables, which exhibit logistics 

performance according to their LPI.  The proposed analytical approach incorporates machine 

learning (ML) techniques with an emphasis on prediction and regression modeling in relation 

to some selected economic features. The accuracy of ML predictions is based on the model 

structure, training algorithm, and to a certain degree the feature space that is built out of the 

initial feature set and the feature analysis algorithm (Chandrashekar et al., 2014). Preprocessing 

in ML applications often includes feature selection, which is the extraction of a subset of 

features that provide the highest predictive value and thus remove information-poor variables 

(Vieira et al., 2010). This paper sets out to accomplish two primary aims: (1) the identification 

of selected economic features that most represent the predicted variable in forecasting a 

country’s logistics performance, and (2) increase prediction accuracy by using different ML 

regression algorithms. This study attempts to address two critical issues: first, can ML 

algorithms be utilized to identify selected appropriate subsets of economic features that 

represent a nation’s logistics performance? Second, what type of ML regression is optimal to 

use on logistics performance with specific economic indicators? 

The structure of this paper is as follows: Section 2 reviews relevant literature on feature 

selection and ML regression techniques. Section 3 presents the methodology, including the 

feature selection process, data sources, data preparation, analysis, and parameter configuration. 

Sections 4 and 5 provide the results and discussion, followed by conclusions and directions for 

future research. 
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2. Literature review 

2.1. Machine Learning and Decision-Making Policy 

The quick spread of machine learning (ML) in the era of big data greatly enhances decision-

making ability in many different fields. Jordan & Mitchell (2015) underlined in their careful 

analysis that the integration of machine learning into data-intensive environments helps to 

extract complex patterns and predictions from large datasets, therefore affecting fields 

including urban planning and healthcare. Machine learning models, a subset of artificial 

intelligence, integrate many concepts by using the exponential growth of data (Zhu et al., 2021). 

Machine learning methods focus on how computers replicate human learning behaviors to 

acquire new information and improve predictive accuracy over time. Predictive or classification 

analytics is an essential function of machine learning. The core concept of machine learning is 

to employ computational algorithms to comprehend and derive insights from data. Fresh data 

facilitates machine learning algorithms to extend previously learned knowledge to provide 

predictions, hence enabling decision-making in new settings (Ray & Chaudhiri, 2021). While 

simultaneously posing issues relating to data privacy, security, and ethical algorithmic 

governance, this ability improves outcomes by process efficiency. Consequently, there is a 

growing necessity for comprehensive regulatory frameworks to tackle these concerns, 

guaranteeing that machine learning applications in decision-making are both efficient and 

ethically principled.  

The role of ML learning in decision-making policies is critical due to its ability to uncover 

patterns and insights from large datasets that human analysts might miss. This is an important 

foundation for creating superior commercial value and comprehensive economic development, 

especially in the era of big data is the key since it provides the correlations between data inputs 

and decision outputs (Coyle & Weller, 2020). Furthermore, good application of ML in 

developing policies not only enhances the capacity for national level operation but also for the 

corporate level (Souza et al., 2019). Application of machine learning (ML) to public policy-

making has demonstrated interesting outcomes in the ever-changing field. In this context, Kreif 

et al., 2022 shown how ML may assist government officials can review of evaluation of prior 

health insurance expansions are able to maybe guide the re-design of the eligibility criteria for 

subsidized health insurance in Indonesia. Furthermore, in the field of energy management, 

Kumar et al. (2023) investigated the benefits and drawbacks of using machine learning for 

energy optimization in smart homes. This study suggests using the Stochastic Gradient Descent 

(SGD) algorithm to maximize energy use in smart homes, however several obstacles remain, 

such as data privacy, data gathering accuracy, and cost, which can impede broad adoption of 

the technique. According to Ranjan et al. (2022), several years of trading and the growing 

popularity of Bitcoin have attracted significant attention from society, especially economic 

policymakers, in the efficacy of ML algorithms for predicting Bitcoin prices. The design of the 

ML system produces policies continuously as they adapt and grow over time (Mulligan & 

Bamberger, 2019). Besides, to fully leverage the potential benefits of AI for SCM, Min, H. 

(2009) revealed numerous sub-fields of AI that are most suitable for tackling real challenges 

important to SCM. In doing so, this article examines the history of successful applications of 

artificial intelligence to supply chain management and identifies the areas of supply chain 
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management that are most suitable for the application of artificial intelligence. The use of 

dynamic economic big data as inputs to predict decision outputs in order to assist with policy 

making in all economic and commercial sectors will become more attractive. Therefore, further 

investigation in these fields is necessary. 

2.2. The Application of ML in Logistics and Supply Chain Management 

2.2.1. Logistics Performance Index 

Efficient transportation and logistics activities benefit not only the foreign but also the 

home economies. Superior logistical and operational systems can assist international trade 

because they connect the domestic and foreign economies. Evaluating a country's trade 

facilitation and logistics is crucial for its competitiveness, particularly in emerging markets. 

Since 2010, the World Bank has issued the LPI every two years, ranking 160 countries. The 

first publication was in 2007. LPI provides an overview of country-specific customs 

procedures, logistical costs, land, and marine transport infrastructure, and more. Countries base 

their strategic development strategies and targets on their LPI score. 

The Logistics Performance Index, or LPI, is a powerful and all-encompassing indicator 

that has been used in numerous studies to examine the general logistics operations of groups of 

nations in the context of the robust growth of multimodal transport services. Shepherd et al. 

(2023) laid the foundation for performance-tracking policymakers and researchers, particularly 

in smaller and lower-income countries, by using and choosing the best parameters for machine 

learning models to account for LPI scores from 30 more countries and 13 more years. In contrast 

to earlier research, the authors examined a wider range of explanatory factors for LPI scores.  

According to World Bank, The LPI (Logistics Performance Index) is a global 

benchmarking instrument designed to assess a country's efficiency in trade and transport 

facilitation. It specifically evaluates aspects of trade and logistics processes, enabling nations 

to pinpoint critical obstacles and uncover potential areas for enhancement. The LPI summarizes 

the performance of countries through six dimensions that capture the most important aspects of 

the logistics environment:  

 1. Customs; efficiency of the customs clearance process.  

 2. Infrastructure; quality of trade and transport-related infrastructure.  

 3. International Shipments; ease of arranging competitively priced shipments.  

 4. Logistics Quality; competence and quality of logistics services.  

 5. Tracking and Tracing; ability to track and trace consignments.  

 6. Timeliness; frequency with which shipments reach the consignee within the scheduled 

or expected time (Arvis et al.2014). 

The LPI offers a thorough evaluation of global logistics performance, along with an 

analysis of performance trends, enabling an understanding of how logistics efficiency evolves 

over time. The performance is measured using a 5-point scale, with the overall LPI calculated 

as a weighted average across six key areas of logistics performance. Additionally, the LPI 

incorporates domestic performance indicators, which are not reflected in the country's overall 
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score. It is further supplemented by quantitative data on specific elements of international 

supply chains in the respondents' countries, including import/export activities, lead times, 

supply chain costs, customs procedures, and the proportion of shipments subject to physical 

inspections (Arvis et al., 2012). 

In term of international economics, there is ample evidence that the effectiveness of 

logistics networks is a crucial factor of bilateral trade, although the amount of the influence 

varies depending on economic and geographical characteristics (Çelebi, D., 2019). According 

to Ojala (2015) the efficiency of the transport system and the profitability of the industry are 

closely interconnected. Key factors such as reducing inventory through rapid turnover, the 

ability to adapt to fluctuating demand, minimizing lead times, and achieving the lowest 

transportation costs are vital for a company's competitive edge. Consequently, transportation 

systems are viewed as a crucial production element and a significant factor in decisions 

regarding facility locations. Allowing for comparisons across 160 countries, the LPI helps 

businesses identify challenges and opportunities related to the transport infrastructure, logistics 

expertise, and efficient supply chains in the receiving country. Arvis et al. (2007) also 

concluded that countries with the most predictable, efficient, and well-managed transport routes 

and trade procedures are also those most likely to benefit from technological advancements, 

economic liberalization, and greater access to international markets. As a result, the index 

ranking tends to place developed countries at the top, while emerging nations are positioned 

more variably across the spectrum. In this context, the LPI serves as a key indicator of the host 

country’s trade logistics performance and a benchmark when selecting sites for various 

operations. This is why countries often prioritize their ranking over improvements in the actual 

values of the LPI indicators. However, by improving the LPI index, a country can indirectly 

enhance its ranking on the logistics positioning map, which in turn helps boost its international 

trade and exchange. 

2.2.2. Feature Selection 

Feature selection involves picking a limited number of variables that are most critical for 

building the model. Proper selection of features enhances the model performance through 

minimization of information loss and the elimination of redundant, irrelevant, or highly 

correlated features contained in the data. It is often used to make the model more 

comprehensible and to improve generality by decreasing variance (R, Muthukrishnan & Rohini, 

R., 2016). Feature selection incorporates three general strategies: filter, wrapper and embedded. 

Filter methods divide features into groups on the basis of their statistical measures and 

subsequently rank them, effectively turning feature selection into a ranking task. These methods 

are not dependent on the machine learning technique associated with the chosen features. These 

include mutual information, correlation-based methods, Chi-square tests, and analyze of 

principal components. Due to the speed with which they process data, filter methods are 

generally preferred when dealing with high dimensional datasets (R, Muthukrishnan & Rohini, 

R., 2016). 

On the one hand, embedded methods offer a balanced approach to feature selection by 

integrating it directly into the model training process, providing a middle ground between filter 

and wrapper methods. These methods simultaneously return the learned model and the selected 
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features (Lu, M., 2019). The key characteristic of embedded techniques is that the feature 

selection and model learning components are inseparable (Lal, T. N. et al., 2006). 

Regularization is often used within embedded methods during training, such as in regularized 

models like linear discriminant analysis, support vector machines (SVM), and LASSO, which 

are common embedded approaches (Lu, M., 2019). For example, LASSO applies an L1-norm 

penalty to normalize the parameters of a linear model, effectively reducing less relevant 

coefficients to zero. Additionally, sparse learning approaches for multi-class classification, such 

as L2, 1-norm regularized regression, have been proposed (Lu, M., 2019). 

Additionally, it is widespread that Principal component analysis (PCA) has been utilized 

in data mining to examine data structure. By maximizing the variance of the data, PCA 

generates new orthogonal variables, often known as latent variables or main components. In 

order to visualize the data in a low-dimensional PC space, the number of latent factors is 

significantly smaller than the number of original variables (Guo et al, 2002). Since PCA 

employs all of the original variables to create the new latent variables (principal components), 

it significantly decreases the dimensionality of the space but does not decrease the number of 

original variables. In data mining, selecting a small subset of variables that can effectively 

represent the structure of the complete dataset is a critical task. The goal is to retain as much 

information as possible while reducing dimensionality, which enhances model performance and 

interpretability. Krzanowski (1987) proposed a method based on Procrustes analysis for feature 

selection, which aims to identify a subset of variables that closely mirrors the structure of the 

full dataset. The method employs a stepwise procedure, specifically backward elimination, 

where variables are removed one at a time to improve the subset's representation of the data. 

However, while this approach offers a structured way to select variables, it does not guarantee 

finding the best possible global subset. Since the method uses a stepwise procedure, it is prone 

to local optima, meaning that the selection process may not yield the most optimal subset of 

features. This limitation becomes particularly evident when working with datasets containing 

hundreds or thousands of variables, a common scenario in data mining. Additionally, Procrustes 

analysis requires performing Principal Component Analysis (PCA) at each step of the 

elimination process, which can be computationally intensive. As the number of variables 

increases, the computational cost grows exponentially, making it less efficient for large datasets 

(Guo et al, 2002). 

For feature selection in this study, embedding techniques such as Lasso, Ridge, and Elastic 

Net are used. These are advantageous because they enable feature selection and prediction to 

happen at the same time. The correlations between economic variables are also assessed using 

correlation-based testing techniques. These techniques, which together aid in determining the 

most pertinent features for the model, include Principal Component Analysis (PCA), Analysis 

of Variance (ANOVA), F-test, and Recursive Feature Elimination (RFE). By choosing the most 

informative features and removing unnecessary or redundant ones, these methods seek to 

increase the accuracy and efficiency of the model. 

2.2.3. Machine Learning of Regression 

When it comes to predicting LPI and/or similarity indices, some of the most common ML 

methods is supervised learning, which trains the system using a collection of known or 
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unknown patterns. There are several approaches employed, including regression and 

classification. A foundational concept in ML is the ability of algorithms to “learn” from 

historical data. During the training phase, these algorithms analyze large datasets to identify 

underlying trends, correlations, and structures within the data. For instance, supervised learning 

algorithms such as linear regression, decision trees, and support vector machines are widely 

used to forecast future outcomes based on labeled historical data Burr, T. (2008).  A few studies 

have concentrated on the focus of learning in ML systems in relation to predictive capabilities, 

stressing their iterative nature. Algorithms increase their performance accuracy and model 

building as more data is processed. This is crucial in predictive maintenance of equipment 

failures in machine learning, as more operational data sets are analyzed. As told by Jordan & 

Mitchell (2015), these patterns are crucial to consider especially in dynamic environments 

where the conditions change over time. Patterns and algorithms that utilize machine learning, 

K-Nearest neighbors, support vector classifier (linear and nonlinear kernels), decision trees, 

random forests, AdaBoost, and Artificial Neural Networks, are commonly adopted by Zhang et 

al. (2023) to anticipate in the continuous-casting process by measuring time series data of 

machines. The figure 1 below illustrate the general predictive ML framework for logistics 

performance prediction based on supervised learning algorithm. 

 

Figure 1. General predictive ML framework for logistics performance prediction 

Source: D'Aleo and Sergi (2017) 

Regarding the predicting of the LPI, it is necessary to include some external factors while 

estimating the logistics performance predictor variables. If there are no such external variables, 

the data for the predictor is usually built with training sets based on historical periods. On the 

one hand, training data can also be enhanced by adding relevant external factors. Hwang et al. 

(2023) identified the most important macro-level logistics performance determinants of 

industrial policy priorities, strategic infrastructure development, public-private logistics market 

growth, and communications network configurations. These issues are vital for considering the 

macro logistics performance of China, Japan, and Korea. In the same vein, Zeng et al. (2021) 

state that using external precise multivariate metrics will improve the quality of logistics 

performance predictions. The text demonstrates the relevance of including variables that have 

strong correlation with the logistics system performance in formulating multivariate models. 

D’Aleo and Sergi (2017) further examine the impact of systematic factors that might influence 

performance and efficiency of logistics, such as transport policy and other external factors. This 
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study highlights the importance of this. On the one hand, these techniques may not be as 

successful without the proper choice of external variables. In particular, researchers need to 

vary these external factors for every step of the model training and prediction process to 

quantify their contribution. In general, the prediction accuracy is high when the corresponding 

variable is easy to understand (Zeng et al., 2021). As reported in the literature, one of the 

dominant ANN approaches is widely used (Yuhong Li, & Weihua Ma, 2010). ANN models are 

constructed as a nonlinear combination of a set of elements (Tealab et al., 2017). More complex 

algorithms are necessary to resolve particularly nonlinear relationships due to the complex 

macroeconomic and microeconomic factors.  

In this study, A range of regression techniques are used to understand the relationship 

between goal variables and economic factors. First, Multiple Linear Regression (MLR) is used 

to understand the linear relationship between predictors and outcomes. MLR provides valuable 

insight into how significant and impactful each feature is. Also, to increase predicted accuracy 

to account for complexities, non-linear correlations are captured through Support Vector 

Machines (SVM), Random Forest Regression, and XGBoost. To avoid overfitting and to 

impose a penalty on excessive model complexity, more complex regression techniques such as 

Lasso, Ridge, and Elastic-Net are used. These regression models are suitable for the analysis of 

economic data in this study, since these models can accommodate structures of data that are 

both linear and non-linear. 

 

3. Data and Methodology 

3.1. Data sources and data preparation 

3.1.1. Data sources 

The authors use the secondary data from OurWorldInData and WorldBank statistics over 

14 years, from 2010 to 2023 (7 periods), including the data of 91 countries with available LPI 

information.  

Typically, the variables the authors use in this research include economic component and 

population component, which show a substantial correlation between the logistics performance 

of a nation of LPI score and a factor, for example GDP per Capita (GDP_C), Population Growth 

(Pop_Gr), Export (Exp) and Import (Imp) that LPI has a significant positive effect on increasing 

international trade for both import and export.  

Table 1. Summary of variables 

Summary of 

variables 
Definition Sources 

LPI Logistics Performance Index WorldBank 

CPI Consumer Price Index WorldBank 

Exp Export WorldBank 

Imp Imports WorldBank 
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Summary of 

variables 
Definition Sources 

GDP_Gr GDP Growth WorldBank 

GDP_C GDP per capita WorldBank 

GD/GDP General government gross debt WorldBank 

GLB/GDP General government net lending or borrowing WorldBank 

GS/GDP Gross savings GDP WorldBank 

GE/GDP Government expenditure of GDP WorldBank 

IRA Inflation rate average consumer prices WorldBank 

IRE Inflation rate end of period consumer prices WorldBank 

LB Labor force WorldBank 

Net_In Net inflows WorldBank 

Net_Out Net outflows WorldBank 

N_GDP Nominal GDP WorldBank 

GEE/GDP Government expenditure on education, total (% of GDP) OurWorldInData 

GEE/GE 
Government expenditure on education, total (% of 

government expenditure) 
OurWorldInData 

Pop_Gr Population growth WorldBank 

Pop Population WorldBank 

SE Secondary education enrollment OurWorldInData 

CAB/GDP Current account balance GDP WorldBank 

CAB Current account balance WorldBank 

Source: Summarize by the authors, 2025 

3.1.2. Data Pre-Processing 

In this research, data were aggregated from seven cycles conducted between 2010 and 

2023, culminating in a dataset encompassing 23 features across 91 countries, derived from the 

mapping of the Logistics Performance Index (LPI) data. Ensuring the integrity of the compiled 

dataset was a critical priority, as any data loss during the mapping process could potentially 

undermine the validity and precision of subsequent analytical procedures. 

Recognizing the detrimental effects of missing data on model performance and the inherent 

risks of introducing bias especially when utilizing imputation techniques such as mean or 

median substitution, rigorous measures were implemented to minimize data incompleteness. 

Specifically, all missing values related to the LPI variables were excluded to maintain the 

robustness and reliability of these primary indicators. For the remaining variables, where the 
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incidence of missing data was minimal, imputation was conducted using the mean values of the 

respective variables, thereby optimizing data retention without compromising the dataset’s 

overall integrity. 

The finalized dataset consists of over 630 observations, corresponding to the seven cycles 

across the 91 countries. For the development and evaluation of the machine learning model, the 

dataset was partitioned, with 80% designated for training purposes and the remaining 20% 

reserved for testing. This stratification facilitates a robust validation process, ensuring the 

model’s performance is accurately assessed. 

3.2. Empirical framework 

The economic component plays a critical role in the logistics performance of a nation, as 

evidenced by a substantial correlation between a country’s Logistics Performance Index (LPI) 

score and key economic factors, such as GDP per capita (Word Bank, 2024), export and import 

volumes (OurWorldInData, 2024). According to Takele (2019), the components of the LPI 

significantly influence the growth of international trade, affecting both imports and exports. 

These factors are integral to understanding the relationship between logistics performance and 

economic development, providing valuable insights for generating policies aimed at improving 

logistics performance based on predictive correlation parameters. 

This study focuses on supply chain efficiency, particularly in terms of the financial 

efficiency of supply networks, with a specific emphasis on the 91 countries. The performance 

of logistics is closely tied to how effectively supply chains connect firms to both domestic and 

international opportunities (World Bank, 2018). The analysis presented in this research utilizes 

training data derived from both macroeconomic and microeconomic variables. Figure 2 

illustrates the construction of this training data, incorporating relevant economic features that 

influence logistics performance. 

 

Figure 2. A methodological framework of LPI prediction procedure 

Source: Suriyan Jomthanachai et al., 2023 

Seven ML models and one MLP-ANN were prepared. The methodologies employed 

encompass a spectrum ranging from traditional statistical techniques to cutting-edge machine 

learning algorithms. Specifically, the models implemented include Multiple Linear Regression 

(MLR), XGBoost Regression (XGB), Random Forest Regression (RF), Support Vector 

Machines (SVM) for regression, KNearest Neighbors Regression (KNN), Decision Tree 
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Regression, an embedded approach based on penalized linear regression, and Multilayer 

Perceptron Artificial Neural Network (MLP-ANN) Regression. This comprehensive modeling 

framework facilitated a rigorous evaluation of both predictive performance and model 

generalizability, thereby elucidating the relationships between process parameters and the LPI. 

3.3. Data analysis and parameter setting 

3.3.1. Feature selection 

3.3.1.1. Correlation method 

In this study, the Pearson correlation coefficient is employed to quantify the linear 

association between the variables x and y (Pearson, 1895). This framework facilitates a 

systematic evaluation of the linear relationships among the studied variables, thereby 

supporting the robustness of the model’s feature selection process. 

3.3.1.2. Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a well-established multivariate technique used to 

reduce data dimensionality and is commonly applied to consolidate multiple well-being 

indicators into a single composite index. In the present study, PCA was implemented in Python 

to extract principal components from both input and output variables, following the centering 

and scaling of the datasets to standardize the data. 

A loading threshold of 0.3 (in absolute value) was established, ensuring that only variables 

with loadings meeting or exceeding this criterion were considered for subsequent analysis. To 

further enhance the interpretability of the extracted factors, a varimax rotation was applied, 

which minimizes cross-loadings by diminishing the influence of variables with loadings below 

the designated significance threshold (Lawrence S et al., 2013). 

For both feature selection and visualization, PCA biplots were generated (Abimbola O-PP 

et al., 2020). In these biplots, the first principal component (PC0) delineates the primary 

dimension, while the second principal component (PC1) represents the secondary dimension. 

This biplot-based approach offers a graphical depiction of the interrelationships among the 

variables, with vectors representing the contributions of the original parameters (Zhang H, 

Srinivasan R., 2021). It is noteworthy that the centering and scaling of the attributes during 

preprocessing were critical in ensuring the robustness and reliability of the PCA results. 

3.3.1.3. ANOVA F-test 

In this study, we employed a filte-based feature selection approach, specifically, the 

ANOVA-F test, to identify the most pertinent features from both datasets. Filter-based methods 

utilize various statistical measures, such as similarity, dependence, information, and distance 

metrics, to elucidate significant dependencies or correlations between the input features and the 

target variable. Analysis of Variance (ANOVA) comprises a family of parametric statistical 

models and estimation procedures designed to evaluate whether the means of two or more 

samples originate from the same distribution. The F-test, also known as the F-statistic, involves 

calculating the ratio of variances to determine statistical significance. 

In this context, the ANOVA-F test functions as a univariate statistical method whereby 
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each feature is individually compared to the target variable to assess the existence of statistically 

significant relationships. This technique is particularly advantageous in classification scenarios 

where the input features are numerical and the target variable is numerical. The ANOVA-F test 

was implemented in Python using the f_classif() function provided by the scikit-learn library. 

This function serves as the scoring mechanism within the SelectKBest class, which ranks 

features based on their computed scores and selects those with the highest values. In our 

analysis, the f_classif() function was employed as the scoring function - representing the 

ANOVA-F test to discern and retain the most critical features from the datasets (Han Zhuang 

et al., 2021).  

3.3.1.4. Recursive Feature Elimination (RFE) 

Recursive Feature Elimination (RFE) is a backward feature selection technique that begins 

by constructing a model using the complete set of available features and computing an 

importance score for each. Subsequently, features with the lowest importance scores are 

iteratively removed, with the model being retrained at each step to recalculate the scores. This 

recursive process continues until a specified number of features remains. Notably, users can 

define both the number of features to evaluate and the size of each subset, making the subset 

size a critical tuning parameter. The subset that optimizes the performance criteria is ultimately 

selected for training the final model (Baffa et al., 2022). 

The reduced dataset, comprising the selected features and therefore exhibiting lower 

dimensionality compared to the original dataset, was subsequently partitioned into training and 

testing sets. A 10-fold cross-validation procedure was then applied, wherein the dataset was 

divided into 10 distinct folds. In each iteration, one-fold was designated as the testing set while 

the remaining folds served as the training set. The training data in each iteration was fed into 

an ensemble classifier to facilitate model training.  

3.3.2. Methodology of the ML and ANN Models 

3.3.2.1. Multi Linear Regression (MLR) Algorithm 

Multiple Linear Regression (MLR) is one of the most widely employed linear regression 

models. As a multivariate statistical technique, MLR is used to elucidate the relationship 

between a set of independent variables (𝑋1, 𝑋2, ..., 𝑋𝑛)  and a dependent variable (Y) with an 

explanation and prediction as objectives: explanation and prediction. From an explanatory 

standpoint, the focus is on the regression coefficients evaluating their magnitude, sign, and 

statistical significance to understand the influence of each predictor. In terms of prediction, the 

model assesses the extent to which the independent variables can accurately estimate the 

dependent variable (Hair, J.F., 2010). 

3.3.2.2. XGB Regression Algorithm 

XGBoost (eXtreme Gradient Boosting) is an advanced implementation of gradient 

boosting algorithms that emphasizes computational speed and enhanced performance. It is 

widely recognized as an efficient and scalable end-to-end tree boosting framework. The 

objective function in XGBoost is composed of two key elements: a loss function and a 

regularization term. The loss function measures the discrepancy between the model’s 
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predictions and the observed data typically represented as L(θ) for a set of n predictions, where 

θ denotes the model parameters. The inclusion of the regularization term serves to penalize 

excessive model complexity, thereby reducing the risk of overfitting and enhancing the model’s 

generalization capabilities. 

XGBoost extends the gradient boosting framework by iteratively adding new predictors 

(trees), each designed to rectify the residual errors of the preceding ensemble. At each iteration, 

the model employs a gradient descent approach to minimize the overall objective function, 

updating the predictions by following the negative gradient of the loss function as evaluated on 

the current predictions (Sun, Z. et al., 2024). 

XGBoost is designed to autonomously determine the optimal strategy for handling missing 

values during training. When a split point contains missing data, the model learns whether 

assigning these observations to the left or right branch maximizes the gain, thereby enhancing 

its ability to effectively manage incomplete datasets. Unlike conventional gradient boosting 

methods that cease splitting a node once no further improvement is detected, XGBoost initially 

expands the tree to its full depth. It then prunes branches that offer minimal contribution to the 

overall prediction performance, using the gain from the objective function as the pruning 

criterion (Wan, A. et al., 2024). 

3.3.2.3. Random Forest Regression Algorithm 

The random forest (RF) model is an ensemble learning method that synthesizes predictions 

from multiple decision trees, thereby yielding results that are typically more accurate and stable 

than those derived from any single decision tree. During the training process, RF constructs a 

collection of decision trees, each generated from a bootstrap sample of the training data. 

Additionally, at each node split, only a randomly selected subset of features is evaluated. This 

inherent randomness contributes to the model's robustness and significantly reduces its 

susceptibility to overfitting. 

This method provides several advantages, including enhanced predictive accuracy through 

the aggregation of outputs from multiple trees and increased robustness against overfitting, 

particularly as the number of trees grows. Additionally, these models demonstrate resilience to 

missing data, maintaining performance even when a significant portion of the data is absent. 

Additionally, the primary limitations include increased computational complexity and cost 

associated with large ensembles, as well as diminished interpretability compared to a single 

decision tree (Sun, Z. et al., 2024). 

3.3.2.4. Support Vector Machines Algorithm 

Support Vector Machines (SVM), initially proposed by Vapnik, have been extensively 

applied to address non-linear regression challenges (Vapnik, V., 1995). A considerable body of 

literature exists that elucidates the theoretical foundations of SVM (Desai, S.S. et al., 2019). In 

this study, an ε-SVM regression model was employed, which necessitates the use of a training 

dataset for effective model development. 

For the ε-SVM regression model employing a diametral basis function (RBF) kernel, the 

generalization capability is optimized by tuning three hyperparameters: the regularization 
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parameter C, the ε-insensitive loss parameter, and the kernel parameter γ. In this study, optimal 

values for these parameters were determined via a trial-and-error approach. Specifically, 80% 

of the dataset was randomly allocated for training and the remaining 20% for validation, with 

performance further evaluated through ten-fold cross validation. All support vector machine 

models were implemented using Python. 

3.3.2.5. KNeighbors Regression Algorithm 

KNearest Neighbor (KNN) algorithm classifies an object by calculating the Euclidean 

distance between data points and assigning the object to the class most common among its 

KNearest Neighbors (J. Huang, 2018). The value of K is positive integer and usually small. The 

classifier's performance is highly dependent on the choice of value K. Usually the value of K is 

chosen as an odd number for binary classification to avoid ties in the voting process. If the value 

of K is chosen 1 then the object is simply assigned the class of its single nearest neighbor. Value 

of K chosen should be optimal, if the value of K is small, then it could be underfitting, while a 

very large value can cause overfitting of the model.  

3.3.2.6. Decision Tree Regression Algorithm 

The Decision Tree (DT) algorithm is widely employed for classification tasks in machine 

learning due to its versatility in handling both categorical and continuous data (Charbuty & 

Abdulazeez, 2021). DTs represent data through a hierarchical tree structure that extends from 

a single root node to multiple leaf nodes. The tree construction process initiates at the root, 

where the selection of the splitting feature is guided by impurity metrics such as the Gini index 

or entropy (Kingsford et al., 2008).  

3.3.2.7. Embedded technique (ML of Penalized Linear Regression Technique) 

In the presence of noisy data, conventional linear regression methods such as ordinary least 

squares (OLS) regression, are prone to overfitting, resulting in models that perform well on 

training data yet fail to generalize to new or unseen samples. In contrast, regularization 

techniques employed in ridge regression, LASSO regression, and Elastic-net regression 

mitigate overfitting by constraining model complexity, thereby enhancing the generalizability 

of predictions on unseen data (Cui & Gong, 2018). 

a) Ridge regression: 

 Ridge regression approach effectively shrinks the magnitude of regression coefficients, 

thereby enhancing the model's generalizability when predicting new, unseen data. A 

regularization parameter, often referred to as the penalty factor, is employed to balance the 

trade-off between minimizing the training data's prediction error and imposing L2-norm 

regularization, thereby controlling the bias-variance trade-off (Zou & Hastie, 2005).  

The primary advantages of this method are its capacity to handle strongly correlated 

environmental variables and its efficacy in scenarios with relatively modest data volumes. 

However, a notable disadvantage is that the resulting parameter estimates may be biased 

(Ahmadi‐Nedushan et al., 2006). 

b) LASSO regression: 
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The L1-norm regularization is applied to the OLS loss function in LASSO regression, with 

the goal of minimizing the sum of the absolute values of the regression coefficients (Tibshirani, 

1996).  

L1-norm regularization typically forces most coefficients to zero, retaining only one feature 

among groups of correlated predictors (Zou & Hastie, 2005). Consequently, LASSO regression 

generates a highly sparse predictive model that facilitates variable selection and reduces model 

complexity. However, this sparsity may be problematic when the number of features is high 

relative to the number of samples (Efron et al., 2004).  

The primary advantage of LASSO lies in its ability to yield interpretable models by 

selecting a subset of predictors that most strongly influence the response variable, a feature 

particularly beneficial when data are scarce. Conversely, a key limitation is that, among sets of 

highly collinear variables, the model tends to arbitrarily select a single covariate while 

excluding the others (Boucher et al., 2015). 

c) Elastic-net regression: 

Elastic-net regression seeks to overcome the limitations of the LASSO technique (Zou & 

Hastie, 2005). Elastic-net regression represents a hybrid of LASSO and ridge regression 

techniques, enabling the selection of a number of features that may exceed the sample size while 

still promoting model sparsity (Zou & Hastie, 2005). A mixing parameter 𝛼 is utilized to 

balance the contributions of the L1-norm (associated with LASSO) and L2-norm (associated 

with ridge regression). The values for 𝛼 of Elastic-net lie between Ridge (𝛼 = 0) and LASSO 

(𝛼 = 1). 

 One notable advantage of the Elastic-net approach is its robust performance in high-

dimensional settings, particularly when the number of predictors surpasses the number of 

observations. Moreover, it often yields a model that is more stable and interpretable compared 

to LASSO alone. Conversely, a potential drawback is that when data availability is limited, the 

model may incorporate an excessive number of variables, thereby overwhelming the dataset 

(Boucher et al., 2015). In summary, Elastic-net is a regularized regression method that 

integrates both L1 and L2 penalties, making it particularly effective in scenarios involving 

multiple correlated features. 

3.3.2.8.  MLP-ANN Regression Algorithm 

The multilayer perceptron (MLP) is a fundamental architecture within artificial neural 

networks and serves as a cornerstone of deep learning methodologies. It is characterized by the 

presence of at least three distinct layers: an input layer, one or more hidden layers, and an output 

layer. Training of the MLP is typically conducted using the supervised learning algorithm 

known as backpropagation (Gürkan Işık et al., 2023). 

In this architecture, the input layer is responsible for receiving the raw data, which is 

subsequently propagated through the network via one or more hidden layers. Within these 

hidden layers, individual neurons perform computations by processing the incoming signals 

and transmitting the resulting outputs to subsequent layers. The overall complexity and 

representational capacity of the MLP are contingent upon the number of hidden layers and the 



 

FTU Working Paper Series, Vol. 1 No. 2 (03/2025) | 17 

number of neurons contained within each layer (Chai Meijuan, 2021). 

Ultimately, the processed information reaches the output layer, where the network 

generates its final prediction or classification. At the level of each neuron, a weighted sum of 

its inputs is computed, to which a bias is added; this aggregate is then transformed through an 

activation function to yield the neuron's output.  

Activation functions endow the network with non-linear properties, which are essential for 

learning and representing complex data patterns. Among the widely used activation functions 

are Sigmoid, Tanh, and ReLU (Rectified Linear Unit), with the Softmax function typically 

employed in the output layer for classification tasks (Shomope, I., et al, 2025). 

The network is trained using the backpropagation algorithm, which entails computing the 

gradient of the loss function with respect to each weight via the chain rule. This error gradient 

is then propagated backward from the output layer to the input layer.  

 

Figure 3. Architecture of neural network 

Source: Osisanwo et al., 2017 

Where 𝑥1, 𝑥2, …, 𝑥𝑛 are the inputs, 𝑤𝑘1, 𝑤𝑘2, …, 𝑤𝑘𝑛 are the neuron weights, uk is the 

computation outcome of weighted inputs, bk is the bias term, f(.) is the activation function, and 

𝑦𝑘 is the output. There are several algorithms with which a network can be trained (Osisanwo 

et al., 2017). 

The loss function quantitatively evaluates the discrepancy between the network's predicted 

outputs and the actual target values. For regression tasks, mean squared error (MSE) is typically 

employed, whereas cross-entropy loss is generally preferred for classification problems. To 

minimize this loss, optimization algorithms are utilized. The foundational approach is gradient 

descent, with its more advanced variants, such as stochastic gradient descent (SGD), Adam, 

and RMSprop frequently implemented to enhance convergence and overall training 

performance (Ghadery-Fahliyany, H. et al., 2024). 

Artificial neural networks (ANNs) offer the distinct advantage of adeptly discerning 

complex patterns and generating highly accurate predictions. However, a significant limitation 

is that the network architectures used for function approximation typically necessitate a large 
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volume of training data (Syam & Sharma, 2018). 

3.3.3. Hyperparameter tuning 

In the context of hyperparameter tuning for neural networks, the "black box" problem 

pertains to the inherent difficulty in discerning the impact of individual hyperparameter 

modifications on overall model performance and outcomes. This challenge is particularly 

salient in deep learning, where a multitude of hyperparameters - such as the number of neurons 

per layer, learning rate, regularization techniques, batch size, activation functions, and even the 

number of estimators in ensemble methods - can profoundly influence model effectiveness, 

generalizability, and the computational resources required for training (Ogunsanya, M. et al., 

2023). 

To systematically navigate the hyperparameter space and identify optimal configurations, 

several automated techniques have been developed, including grid search, random search, 

Bayesian optimization, and evolutionary algorithms. Complementary visualization tools (e.g., 

Matplotlib, Seaborn, Plotly, Weights & Biases, TensorBoard, Mlflow, Scikit-learn) facilitate a 

deeper understanding by graphically depicting changes in performance during the learning 

process as hyperparameters are adjusted (Malakouti, S.M. et al., 2023). 

In the present study, hyperparameter tuning for both machine learning (ML) and artificial 

neural network (ANN) models was conducted using the grid search method. This technique 

involves an exhaustive exploration of a predefined hyperparameter space, wherein each 

configuration is systematically evaluated - often via cross-validation—to ascertain its 

performance based on specific criteria, such as accuracy. Although grid search is appreciated 

for its simplicity and ease of implementation, its primary drawback lies in its computational 

expense, particularly when applied to extensive hyperparameter spaces (Qu, Z. et al., 2021). 

3.3.4. Model Evaluation Metrics 

All models were implemented in Python, utilizing robust machine learning libraries such 

as Scikit-learn and XGBoost. To rigorously evaluate the performance of the optimized models, 

six key performance metrics were employed: the coefficient of determination (𝑅2), mean 

absolute error (MAE), mean absolute percentage error (MAPE), mean squared error (MSE), 

root mean squared error (RMSE), and accuracy (Wu, Y. et al., 2022). 

 

4. Result and discussion 

4.1. The result of correlation method 

Figure 4 depicts the result of the correlation study performed using Python tool. When a 

regression type prediction is used, the input of a correlation model spanning both the dependent 

and predictor variables is used.  

We begin by constructing a feature set of predictor factors that have a direct good or 

outstanding correlation to the dependent variable of LPI (r >= 0.4, as shown in the red border 

in Figure 4) (namely set A – Cor_direct). A set A’s predictor variables are GDP_C, r = 0.77, 



 

FTU Working Paper Series, Vol. 1 No. 2 (03/2025) | 19 

GE/GDP, r = 0.62), CAB/GDP with r = 0.41, Exp, r = 0.6, and Imp, r = 0.54), for a total of five 

features.  

Furthermore, the predictor variables that have a strong or outstanding correlation with a 

member of set A (r > 0.45, as shown in the yellow border in Figure 4) is taken into account and 

subsequently extended to a member of set B. The additional predictor variables of a set A into 

set B (Cor_related) include GLB/GDP (with CAB/GDP), r= 0.52, GS/GDP (with CAB/GDP) 

and r = 0.68, N_GDP (with Exp and Imp) and r = 0.84, r = 0.9. The total number of features in 

set B is 5 + 3 = 8. 

 

Figure 4. Correlation Matrix 

Source: The authors, 2025 

4.2. The result of PCA method 

 

Figure 5. Contribution of Features to Principal Component 

Source: The authors, 2025 
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The results of contributions of Features to Principal components are displayed in Figure 

5. The variables, with more than 95% confidence interval, are predicted to affect this study’s 

prediction model. The principal components are divided into 13 components, each component 

represents its impact on the prediction mode, written in the Explained Variance row and in the 

order from largest to smallest, from left to right. In the Figure, PC0 explains 26% of the 

variance, which is the highest among principal components, while PC13 only explains 2% of 

the variance.  

The PCA result is generated by Python in which the dependent variable and predictor 

variables are used as PCA model input to select the feature for the regression purpose. Figure 

5 depicts the proportion of variance of each principal component based on the overall result 

(only PC0 to PC9 out of a total of 14 PCs).    

From the results of contributions of Features to Principal, the authors proceed to select 

features based on the level of variance, which are from 1-3, 1-5, 1-10. The variance of each 

feature must be above 30% to be taken into consideration. PC0 through PC9 may encompass 

roughly 90 percent of the variation (90.22 percent). Furthermore, when PC0 to PC2 were 

evaluated, the variation was 46.2 percent, which is more than half of the range of PC0 to PC9. 

When PC0 to PC4 is considered half of the 10 PCs from PC0 to PC9, the variance is 53.22 

percent.  

Table 2. Contribution of Features to Principal Component 

Feature 
Contribution (PC0-

PC9) 

Contribution (PC0-

PC4) 

Contribution (PC0-

PC2) 

Imp 0.389 0.389 0.389 

Exp 0.388 0.388 0.388 

N_GDP 0.345 0.345 0.345 

LPI Score 0.338 0.338 0.338 

LB 0.336 0.336 0.336 

Pop 0.327 0.327 0.327 

CAB/GDP 0.32 0.32 0.317 

CAB 0.317 0.317 0.317 

GS/GDP 0.426 0.426 0.463 

GLB/GDP 0.357 0.357 0.357 

GDP_Gr 0.326 0.326 0.326 

CE 0.312 0.312 0.312 

GD/GDP 0.306 0.306 0.306 

IRE 0.489 0.522 - 



 

FTU Working Paper Series, Vol. 1 No. 2 (03/2025) | 21 

Feature 
Contribution (PC0-

PC9) 

Contribution (PC0-

PC4) 

Contribution (PC0-

PC2) 

CPI 0.49 0.489 - 

Net_Out 0.923 - - 

Pop_Gr 0.421 - - 

Source: The authors, 2025 

To construct a collection of selected features, we examined the attribute that provides a 

high loading on a factor (equal to or greater than 0.3). The detected attributes in PC0 to PC2 

(46.2 percent variance), PC0 to PC4 (53.22 percent variation), and PC0 to PC9 (92.27 percent 

variation) are allocated to feature sets C, D, and E, respectively.  

Set C such as Imp, Exp, N_GDP, LB, Pop, CAB/GDP, CAB, GS/GDP, GLB/GDP, 

GDP_Gr, CE, GD/GDP, 12 features in total. Set D of 14 features is set C plus 2 features which 

are IRE and CPI. And set E has a total of 17 from the overall 23 features that include 3 more 

variables Net_Out, Pop_Gr, GE/GDP.  

Furthermore, the feature selection while constructing a PCA-biplot is illustrated in Figure 

6, with the selected features are those who have strong interrelations with LPI score. The 

selection is motivated by the interrelationships of each feature to LPI. The direction of the 

feature vector reflects the positive or negative correlations. When a feature has a comparable 

direction that is the smallest in the angle of the vector relative to the LPI vector, it indicates the 

strongest positive correlations, while the opposite direction indicates negative correlations.  

 

Figure 6. PCA Biplot 

Source: The authors, 2025 

Vectors close to perpendicular to the LPI vector, on the other hand, are weakly correlated 

(GLB/GDP and GS/GDP in Figure 6) Based on the PCA-biplot, the selected features of set F 

out of 23 includes GD/GDP, Net_In, N_GDP, Imp, Exp, GE/GDP, GDP_C, which are 7 

features in total. This is due to the relatively high Squared R when compared to other groups of 

features, and the authors recognized set F is the most suitable set to run regression and machine 

learning to have a good outcome. The summary of the subset of features selected using the PCA 

method is shown in Table 3. 
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Table 3. Summary of the subset of features selected using the PCA method 

Economic 

Feature 

Correlation Principle Component Analysis Penalized Linear Regression 

Cor_direct 

(set A) 

Correlated 

(set B) 

PC1-3 

(set C) 

PC1-5 

(set D) 

PC1-10 

(set E) 

Biplot 

(set F) 

LASSO 

(set G) 

E-net_0.9 

(set H) 

E-net_0.5 

(set I) 

E-net_0.1 

(set J) 

CAB 
  

o o o 
    

o 

CAB/GDP o o o o o 
    

o 

CE 
  

o o o 
     

GDP_Gr 
  

o o o 
    

o 

GDP_C o o 
   

o o o o o 

GD/GDP 
  

o o o o 
  

o 
 

GLB/GDP 
 

o o o o 
    

o 

GS/GDP 
 

o o o o 
     

IRA 
        

o o 

IRE 
   

o o 
   

o o 

LB 
  

o o o 
    

o 

N_GDP 
 

o o o o o 
   

o 

Pop 
  

o o o 
    

o 

Pop_Gr 
    

o 
  

o o o 

CPI 
   

o o 
   

o o 

GE/GDP o o 
  

o o o o o o 

Exp o o o o o o o o o o 
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Economic 

Feature 

Correlation Principle Component Analysis Penalized Linear Regression 

Cor_direct 

(set A) 

Correlated 

(set B) 

PC1-3 

(set C) 

PC1-5 

(set D) 

PC1-10 

(set E) 

Biplot 

(set F) 

LASSO 

(set G) 

E-net_0.9 

(set H) 

E-net_0.5 

(set I) 

E-net_0.1 

(set J) 

Imp o o o o o o 
   

o 

Net_In 
     

o 
   

o 

Net_out 
    

o 
     

LPI Score 
          

Source: The authors, 2025 
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4.3. The result of penalized linear regression method  

Table 4 also displays the results of the Embedded technique - LASSO and Elastic Net 

regression.  Using Python, the model for LASSO regression has been reducing the predictor 

parameters from 23 to 3, which offer various interception values and parameter significance. The 3 

features selected by LASSO (set G) include GDP_C, GE/GDP, and Exp.  

Table 4. Feature selection techniques results 

Economic 

Feature 

Univariate Selection 
Recursive Feature 

Elimination 
Tree-based Methods 

ANOVA F-test RFE Random Forest 

CAB o o o 

CAB/GDP o o o 

CE o o o 

GDP_Gr o o o 

GDP_C o o o 

GD/GDP o o o 

GLB/GDP o o o 

GS/GDP o o 
 

IRA o o 
 

IRE o o 
 

LB o o 
 

N_GDP o o 
 

Pop o o 
 

Pop_Gr o o 
 

CPI o 
  

GE/GDP 
   

Exp 
   

Imp 
   

Net_In 
   

Net_out 
   

LPI Score 
   

Source: The authors, 2025 
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For Elastic-net related, in this study, we vary the a as 0.1, 0.5, and 0.9. The results of feature 

selection from Python which provides the preferred parameters that the model does not shrink are 

displayed in Table 4. 

It was found that when a = 0.9 the set of selected features is nearly similar to the results of 

LASSO, but added Pop_Gr. When a is assigned with the value of 0.5, they provide the likely set of 8 

selected features (set H). Finally, for a = 0.1, we found that 17 parameters were nonshrink (set I). Set 

H contains all attributes of set G which GD/GDP, CPI, IRE and IRA are added. And set I comprised 

all elements of set H with CAB, CAB/GDP, GDP_Gr, GLB/GDP, LB, N_GDP, Pop, Imp, Net_In 

combined. The summary of the subset of features selected using penalized linear regression method 

is shown in Table 4.  

We also use other features selection methods to validate the results of LASSO and E-net, 

including ANOVA F-test, Recursive Feature Elimination, and Tree-based Methods.  

The ANOVA F-test for univariate selection is utilized. After running ANOVA F-test and got the 

scores of those features, the authors recognized that 20 is a suitable score to select out features (feature 

must has score more than 20 to be selected). There are 15 out of 23 features selected, and this group 

of features is nearly alike set I. The Recursive Feature Elimination is also run, with a total of 14 

features selected. 

Finally, Tree-based Methods (Random Forest) is used, with a minimum score of 0.01 for feature 

to be selected. There are 7 features selected, which are CAB, CAB/GDP, CE, GDP_Gr, GDP_C, 

GD/GDP. GLB/GDP. With the rfr scores of features, the authors consider the score 0.01 is good 

enough to be used for the selection.  

In summary, after running multiple features selection methods, we conclude that each method 

has its own strength and weakness, with various groups of selected features. These groups will be 

used for the later validation of selected features.  

4.4. Regression and validation result 

Table 5. Average Results for Each model across all datasets 

Model MAE RMSE MAPE NSE R² 

LR 0.279 0.346 9.056 0.631 0.631 

XGB 0.214 0.264 7.056 0.79 0.79 

RFR 0.189 0.235 6.232 0.832 0.832 

SVR 0.218 0.279 7.249 0.76 0.76 

KNN 0.233 0.266 6.838 0.785 0.785 

DTR 0.24 0.31 7.953 0.788 0.788 

MLP-ANN 0.217 0.274 7.195 0.769 0.769 

Ridge 0.278 0.346 9.057 0.63 0.63 

LASSO 0.325 0.39 10.519 0.538 0.538 
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Model MAE RMSE MAPE NSE R² 

E-net 0.5 0.34 0.367 9.866 0.539 0.539 

E-net 0.1 0.288 0.353 9.351 0.616 0.616 

Source: The authors, 2025 

For all datasets, 80% of datasets are trained utilizing identified ML methods such as LR, XGB, 

RFR, SVR, KNN, DTR, MLP-ANN. Furthermore, the LASSO and E-net models constantly train 

their datasets using only the selected feature set that they have been trained on. Furthermore, the entire 

collection of all features is compared. The test sets are then utilized to validate the model. The 

validation findings are represented by a performance evaluator or criterion such as MAE, MAPE, 

RMSE, NSE, and R2.  

Table 6. Average Results for Each model across datasets applied PCA method 

Model MAE RMSE MAPE NSE R² 

Full_dataset 0.225 0.277 7.429 0.768 0.768 

Corr_a (set A) 0.234 0.287 7.735 0.752 0.752 

Corr_b (set B) 0.387 0.488 12.29 0.28 0.28 

PC1_3 (set C) 0.276 0.358 9.683 0.609 0.609 

PC1_5 (set D) 0.263 0.339 8.619 0.656 0.656 

PC1_10 (set E) 0.251 0.317 8.272 0.693 0.693 

Biplot (set F) 0.252 0.286 7.46 0.768 0.768 

Lasso (set G) 0.25 0.287 7.643 0.764 0.764 

Enet_10 (set J) 0.225 0.275 7.452 0.77 0.77 

Enet_50 (set I) 0.23 0.284 7.589 0.757 0.757 

Enet_90 (set H) 0.231 0.279 7.635 0.764 0.764 

ANOVA - Ftest 0.245 0.301 7.833 0.727 0.727 

RFE 0.236 0.291 7.728 0.741 0.741 

RFR 0.251 0.316 8.256 0.695 0.695 

Source: The authors, 2025 

The average score of all ML methods of the subset of selected features (set A to set J, and F-test, 

rfe and rfr) is then displayed.  Compared to other sets, Enet_10 has the greatest performance of all 

criterion. It has the greatest MAE performance (*0.224) (minimum value), while this model with a 

comparable set has the best MAPE performance as the lowest value (*4.41), RMSE as the lowest of 

0.275. NSE values range between 0.28 to 0.768 indicates the prediction performance, whereas NSE 

values close to 1 indicate best prediction performance that the Enet_10 achieves the most excellent 

performance (*0.775).  Finally, we proceed to predict result base on the dataset selected by PCA 

Biplot to see if the result is as significant as that of Enet_10. The dataset of 7 features selected by 
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PCA Biplot is also divided into 2, with 80% is for trained and 20% is for predict. The authors utilized 

regressions such as Decision Tree Regression, XGBoost, K-Nearest Neighbors, Random Forest 

Regression, and Support Vector Machine. The table below show the results for PCA Biplot dataset 

with different methods of regression.  

Table 7. The results of different methods of regression. 

Model Train Score Validation Score Test Score 

Decision Tree Regression 0.908 0.736 0.821 

XGBoost 0.849 0.768 0.85 

K-Nearest Neighbors 1 0.819 0.887 

Random Forest Regression 0.959 0.822 0.894 

Support Vector Machine 0.844 0.789 0.873 

Source: The authors, 2025 

Overall the score looks good, except the overfitting problem of K-Nearest Neighbors. The test 

score shows that Random Forest Regression has the highest score, which indicates that this method 

can give the most appropriate predicted score for LPI Index in the near time.  

The findings demonstrate that the PCA Biplot and Elastic-net 10 feature sets give the closest to 

adequate performance based on the error measurement criteria. The findings also suggest that ML 

algorithms are capable of assisting in the selection of a proper set of economic factors that indicate a 

country’s logistics performance. Furthermore, Random Forest Regression was shown to be the best 

effective prediction model in this investigation. 

4.5. Discussion 

4.5.1. Technical discussion 

Finally, as shown in Table 10, we discussed the finding outcomes based on both feature selection 

techniques of filter and embedding method which is focused on the suggested statistical property and 

ML algorithm. The discussion describes the advantages and disadvantages of models that influence 

the findings of this study. To get good results, effective wrapper strategies, such as sequential search, 

or evolutionary algorithms, such as Particle Swarm Optimization (PSO) or Genetic Algorithm (GA), 

provide local optimum solutions and are computationally viable, are utilized. Because of the potential 

of overfitting and computationally costly (Takele TB, 2019), wrappers have a significant 

disadvantage, particularly in terms of computational inefficiency, which becomes more obvious as 

the feature space develops. The wrapper technique is thus eliminated from this analysis, although it 

will be significant in future studies. 
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Table 8. Finding discussion based on the study model 

Feature 

selection 

strategy 

Approach 

Advantage Disadvantage Finding discussion 
Statistical 

property 

ML 

 algorithm 

Filter Correlation 
 For many features, efficient, and 

fast (Guo, 2019) 

The weak correlation subgroup 

may contain certain potentially 

advantageous traits that cannot 

be properly utilized (Guo, 

2019). 

The dependent and predictor 

variables exhibit a substantial 

association with the less 

advantageous feature set of A 

and B. This model might not be 

as effective for this research 

data set due to its drawbacks 

with the feature selection 

approach. 

 
PCA 

 

Lack of features and low 

complexity (Fauvel, 2009) 

Reduced time and 

computational expense (Bolo, 

2013) Strong capacity for 

generalization (Kwak, 2002) 

The results could be 

significantly altered by just 

scaling some of the criteria 

(Kwak, 2002). 

The potentially significant 

feature set of Sets C, D, E, and 

particularly Set F is provided by 

the PCA technique. One of its 

benefits is that it lacks few 

important features. However, a 

significant alteration that will 

alter the feature set's outcome 

based on its disadvantage is the 

difference in criteria, namely the 

factor loading and percentage of 

variation. 



 

FTU Working Paper Series, Vol. 1 No. 2 (03/2025) | 29 

Embedded LASSO 
 

Provides a clear and 

interpretable model by selecting 

key predictors; useful when 

limited data is available 

(Boucher, 2015) 

Randomly selects one correlated 

variable while ignoring others, 

potentially losing valuable 

information (Boucher, 2015) 

LASSO is valuable for feature 

selection but limited in 

comparison to other ML 

algorithms when used for 

regression tasks 

 
E-net 

 

Performs well when there are 

more parameters than samples; 

offers greater stability compared 

to LASSO (Boucher, 2015) 

Ineffective for feature selection 

with limited data, as it struggles 

with high variable counts 

(Boucher, 2015) 

This approach provides 

significant feature sets but is 

limited compared to filter-based 

ML algorithms 

Other 
ANOVA 

F-test 

 
A flexible statistical method 

applicable to diverse conditions 

(Optimus, 2023) 

Struggles with varying 

conditions and non-uniform 

effects (Luepsen, 2021) 

Subset generation results are 

slower for ANOVA F-test 

compared to other methods 

 
RFE 

 
Effectively removes redundant 

and irrelevant features for high-

dimensional data (Yau, 2014) 

Doesn't perform well on diverse 

datasets; lacks automatic 

stopping criteria for optimal 

feature subsets (Chen, 2007) 

Less effective in handling large 

datasets 

 Random 

Forest 

 
Has advantages in identifying 

key predictor variables (Lu, 

2022) 

Selection bias and challenges in 

identifying informative 

variables (Speiser, 2019) 

Random Forest yields weaker 

index results compared to other 

methods 

  
LR 

Provides flexibility for label 

adjustments and better class 

separation (Fang, 2018) 

Relies heavily on assumptions 

and struggles with high-

dimensional and non-linear data 

(Yu, 2024) 

SVR achieves good 

performance but faces 

challenges with complex data 

issues 

  
XGBoost 

High predictive accuracy in 

various applications, superior to 

other models (Moore, 2022) 

Requires complex 

hyperparameter tuning, 

XGBoost achieves acceptable 

results but faces challenges in 

hyperparameter optimization 
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demanding time and expertise 

(Pesantez-Narvaez, 2019) 

  K-Nearest 

Neighbors 

Can handle various data types 

and forecasting problems 

(Burba, 2009) 

Sensitive to noisy data and 

outliers, impacting performance 

(Song, 2017) 

KNN demonstrates acceptable 

performance but performs 

poorly with noisy datasets 

  
Decision 

Tree 

Regression 

Less sensitive to outliers 

compared to other models (Jena, 

2020) 

Can overfit if the tree is too 

deep, capturing noise instead of 

patterns (Huang, 2024) 

Decision Tree Regression 

achieves acceptable results 

despite challenges with noisy 

data 

  
MLP-ANN 

Useful for high-complexity data 

with non-linear correlations 

(Hundi, 2020) 

Slow convergence and learning 

difficulties due to large 

parameter numbers (Huang, 

2021) 

MLP-ANN faces limitations in 

reaching optimal effectiveness 

due to network design 

restrictions 

  
SVR 

Works well with a linear or non-

linear kernel (Zhu, 2021) 

Challenging to solve non-linear 

problems and kernel selection 

(Ahmadi, 2006) 

SVR achieves acceptable results 

but struggles with kernel-related 

challenges 

  
RFR 

Can handle high-dimensional 

data efficiently (Zhu, 2021) 

Risk of overfitting and unstable 

results in noisy classification 

(Zhu, 2021) 

RFR achieves acceptable results 

but suffers from overfitting in 

noisy data scenarios 

  
Ridge 

Handles multicollinearity 

effectively and performs well 

with smaller datasets (Ahmadi, 

2006) 

Estimations may be biased 

(Ahmadi, 2006) 

Ridge regression faces 

restrictions due to poorly 

correlated variables 

Source: The authors, 2025 
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4.5.2. Economic discussion 

The findings demonstrate that the PCA Biplot and E-net_10 feature sets give the closest to 

adequate performance based on the error measurement criteria. Based on the PCA-biplot, the selected 

features of set F out of 23 includes GD/GDP, Net_In, N_GDP, Imp, Exp, GE/GDP, GDP_C. 

Meanwhile, E-net_10 set only excludes Net_Out, GS/GDP, GD/GDP, CE throughout the full dataset.  

Based on these findings, the authors recognize that normal economic growth indexes related to 

gross domestic product growth such as GDP and GE/GDP can be effective economic attributes to 

predict LPI scores. Other factors regarding trade openness and trading activity such as Imp, Exp also 

prove to be useful when being included in the predictive dataset.  This result is consistent with Alnipak 

(2021), who stated that GDP per capita, the percentage of commercial service imports, and the liner 

shipping connectivity index significantly affect the logistics performance index at country level. 

Similarly, Bhatt (2021) also found that the relationship between LPI and trade is significantly affected 

by trade flow. This means that the developed framework can be used by countries to benchmark and 

implement relevant logistics policies, ultimately improving their LPI scores and global trade 

performances.  

In addition, the study suggests possible datasets for future research related to logistics indices. 

The study identifies several datasets that could be valuable for future research related to logistics 

indices. These datasets include global supply chain performance metrics, transportation network 

efficiency data, warehouse optimization statistics, and trade flow analytics. By analyzing these 

datasets, researchers can develop more accurate models to assess logistics performance, predict 

disruptions, and optimize supply chain operations. Additionally, incorporating real-time tracking 

data and economic indicators can enhance the precision of logistics indices, leading to better 

decision-making for businesses and policymakers. Therefore, the study not only highlights existing 

datasets but also provides a foundation for further exploration and improvement in the field of 

logistics research. 

 

5. Conclusion 

In summary, this study demonstrates the application of machine learning regression for feature 

selection. It examines the impact of logistics performance using the Logistics Performance Index 

(LPI) alongside macroeconomic data from the World Bank. The dataset spans from 2010 to 2023 and 

initially includes 23 economic features. A trade-off is made between maximizing the number of 

instances and minimizing missing values in national economic data during the first stage of feature 

selection. Correlation-based filtering and Principal Component Analysis (PCA) are employed in the 

proposed feature selection process. Various machine learning regression models, including Linear 

Regression (LR), XGBoost, K-Nearest Neighbors (KNN), Multi-Layer Perceptron Artificial Neural 

Networks (MLP-ANN), Support Vector Regression (SVR), Random Forest Regression (RFR), and 

Ridge Regression, are used to train and validate the dataset based on selected features. Additionally, 

embedded methods such as penalized linear regression techniques, including LASSO and Elastic Net 

(E-net), are applied to refine feature selection, followed by continuous training and validation. Based 

on performance metrics such as MAE, MAPE, RMSE, NSE, and R², the PCA Biplot feature set (Set 

F) and the E-net feature set (Set J) yield the most reliable results. These feature sets can serve as 
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viable alternatives, providing performance close to the best while ensuring maximum instances and 

minimal missing data in the dataset. 

 

6. Limitations and future work 

Future research may explore the integration of more diverse feature dimensions alongside 

economic attributes. Key factors linked to megatrends, such as carbon emission rates, fuel and 

renewable energy costs and consumption, and the expansion of the e-commerce market, could provide 

deeper insights into logistics performance in the evolving global supply landscape. 
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